This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Ambidentate, Anionic Phosphine Ligands in Organoelement Chemistry

^a Technische Universitat Munchen, Anorganisch-chemisches Institut, Garching

To cite this Article Karsch, H. H.(1993) 'Ambidentate, Anionic Phosphine Ligands in Organoelement Chemistry', Phosphorus, Sulfur, and Silicon and the Related Elements, 77: 1, 41 - 44

To link to this Article: DOI: 10.1080/10426509308045614 URL: http://dx.doi.org/10.1080/10426509308045614

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AMBIDENTATE, ANIONIC PHOSPHINE LIGANDS IN ORGANOELEMENT CHEMISTRY

HANS H. KARSCH

Technische Universität München, Anorganisch-chemisches Institut, W-8046 Garching

Abstract: Phosphinomethanides bind to electrophiles either via phosphorus or carbon. The resulting compounds usually are fluctional and/or may rearrange from carbon to phosphorus coordination or vice versa. Selective oxidative coupling reactions of the phosphinomethanide ligands are found with metal centers in high oxidation states, whereas these ligands are stable to reduction. Thus, low valent species can be stabilized. In addition, diphosphinomethanides are useful ligands to promote high coordination numbers with main group ("hypervalent compounds"), transition or lanthanoide elements.

INTRODUCTION

Mono-and diphosphinomethanides

monophosphinomethanides

$$\begin{bmatrix} R \\ R \end{bmatrix} \vec{P} - \vec{C} \leq X \\ Y \end{bmatrix} \Theta \qquad \begin{bmatrix} X \\ R_2 \vec{P} - \vec{C} \end{bmatrix} \vec{P} R_2$$

diphosphinomethanides

X,Y = H, $SiMe_3$, PMe_2 : R = Me, Ph

represent a unique class of compounds, where both, the same coordination number and the same valence electronic number of directly connected carbon and phosphorus allow for a comparison of reactivity towards electrophiles. The nucleophilicity can be tuned by the choice of substituents: SiMe₃ and/or PMe₂ substituents at carbon reduce its nucleophilicity to an extent, where both carbon and phosphorus exhibit similar nucleophilicity.

RESULTS

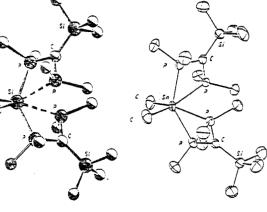
Equilibria with both coordination modes may be found, e.g.

$$CP_{2}Zr \xrightarrow{C} - PMe_{2} \longrightarrow CP_{2}Zr \xrightarrow{C} PMe_{2}$$

$$PMe_{2} \longrightarrow PMe_{2} \longrightarrow PMe_{2}$$

$$Me_{3}Si - PMe_{2} = C (SiMe_{3})_{2} \longrightarrow Me_{2}P - C (SiMe_{3})_{3}$$

$$PMe_{3}Si \xrightarrow{PMe_{2}} C - SiMe_{3} \longrightarrow Me_{3}Si \xrightarrow{PMe_{2}} C - SiMe_{3}$$


Fluctionality also is quite common and rearrangements may also occur.

High coordination numbers with phosphine donor ligands are feasible using diphosphinomethanides. Thus, main group, transition and even lanthanoide element complexes with up to eight element-phosphorus bonds are obtained. Some examples are given below:

$$\begin{array}{c} \text{Me}_{3}\text{Si} - \text{C} \\ \text{Me}_{2} \\ \text{Me}_{2} \\ \text{Me}_{2} \\ \text{Me}_{2} \\ \text{Me}_{2} \\ \text{Me}_{3} \\ \text{Si} - \text{C} \\ \text{SiMe}_{3} \\ \text{Me}_{3} \\ \text{Si} - \text{C} \\ \text{Me}_{2} \\ \text{Me}_{3} \\ \text{SiMe}_{3} \\ \text{SiMe}_{3} \\ \text{SiMe}_{3} \\ \text{SiMe}_{3} \\ \text{Si}_{2} \\ \text{Si}_{2} \\ \text{Si}_{3} \\ \text{Si}_{3} \\ \text{Si}_{4} \\ \text{Si}_{4} \\ \text{Si}_{5} \\ \text{Me}_{3} \\ \text{Me}_{$$

Particularly interesting are the compounds $R_2Si[C(PMe_2)_2-(SiMe_3)]_2$. For R = Me, the solid state structure represents a "frozen transition state" between tetra- and hexacoordination.

Fig.1.
Molecular Structure
of
Me₂E[C(PMe₂)₂(SiMe₃)]

Compounds of this kind are a unique source for transient silylenes. The intermediate phosphine donor stabilized silylene complex liberates R_2Si on heating.

$$Ni(COD)_{2} + Me_{2}Si[C(PMe_{2})_{2}(SiMe_{3})]_{2} \qquad Si(IV) + Ni(O)$$

$$- coo$$

$$Me_{3}Si \qquad Me_{2}P = C$$

$$Me_{2}Si \qquad Ni(COD)$$

$$Me_{2}P = C$$

$$Me_{2}Si \qquad Ni(COD)$$

$$Me_{2}P = C$$

$$Me_{3}Si \qquad Ni(COD)$$

$$Me_{2}P = C$$

$$Me_{2}Si \qquad Ni \qquad PMe_{2}$$

$$Me_{2}P \qquad Me_{2}P$$

$$SiMe_{3} \qquad SiMe_{3}$$

$$Me_{2}P \qquad Me_{2}P$$

$$SiMe_{3} \qquad Ni \qquad PMe_{2}$$

$$Me_{4}P \qquad Me_{5} \qquad Me_{2}$$

$$Me_{5} \qquad Me_{2} \qquad Me_{2}$$

$$Me_{6} \qquad Me_{2} \qquad Me_{2}$$

Stable, phosphine donor stabilized Si(II), Ge(II), Sn(II) and Pb(II) compounds are likewise accessible with diphosphinomethanide ligands. The germanium derivatives are unique in exhibiting a rich, unusual chemistry including an unusual redox reactivity:

Thus SnCl_2 is oxidized by a $\operatorname{Ge}(\operatorname{II})$ derivative, which at least partially, is due to the essentially nonpolar $\operatorname{Ge-P}$ bond. This property seems also responsible for the outstanding nucleophilic behaviour of the resulting dinuclear $\operatorname{Ge}(\operatorname{I})$ compound.

Oxidative C-C, P-C and P-P coupling reactions selectively are observed in the reactions of phosphinomethanides with ${\rm Cp}_2{\rm TiCl}_2$, depending on the substitution pattern and the reaction conditions.

As oxidizing reagent, amongst others, also BiCl $_3$ can be used, provided that more than one heteroatom substituent at the carbanion is present (P-C and P-P coupling). Elemental bismuth is formed as the by-product. In contrast, with PCl $_3$ stable low valent phosphorus intermediates can be isolated. Thus, e.g. adding three equivalents of Li[C(PMe $_2$) $_2$ (SiMe $_3$)] slowly to a solution of PCl $_3$ in diethyl ether at low temperature, a novel $1\lambda^3$, 2, 4,6 λ^5 -Tetraphosphonine ("Tetraphosphabenzene") may be isolated and structurally characterized

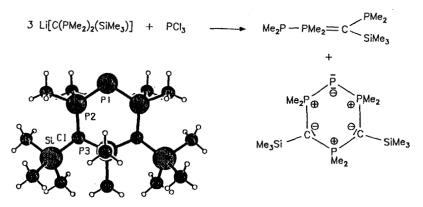


Fig. 2. Molecular Structure of 1

CONCLUSION

Phosphinomethanide ligands give an access to a variety of novel structures, reactivities and dynamic features which is unprecedent in organoelement chemistry and which is mainly due to the ambidentate nature and high nucleophilicity of this class of organophosphorus compounds.